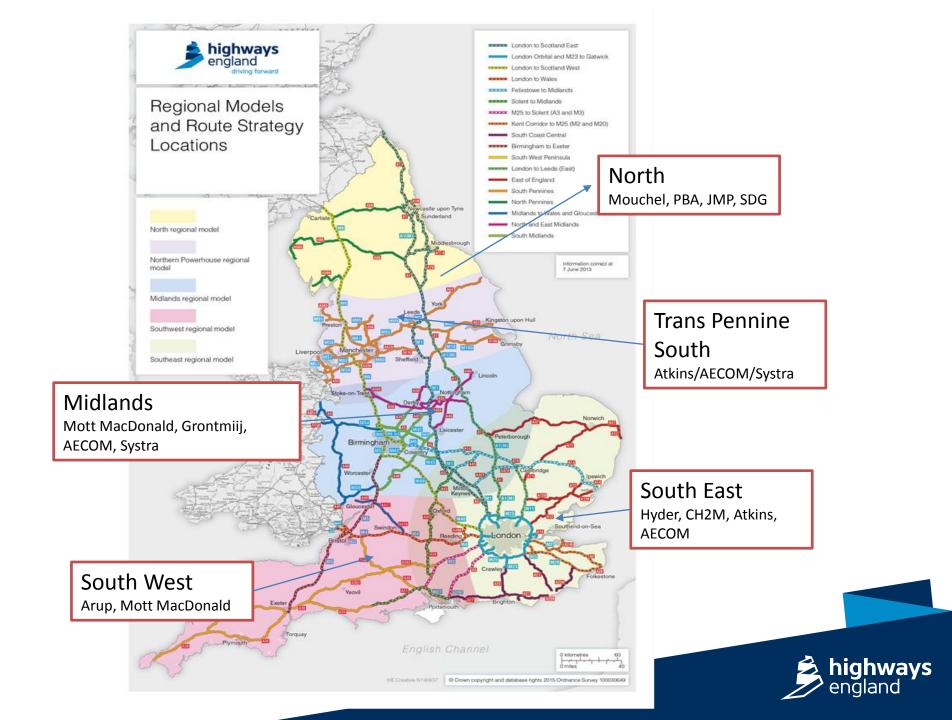


Regional Transport Models

Alison Cox Roger Himlin

Revised v2 Feb 16

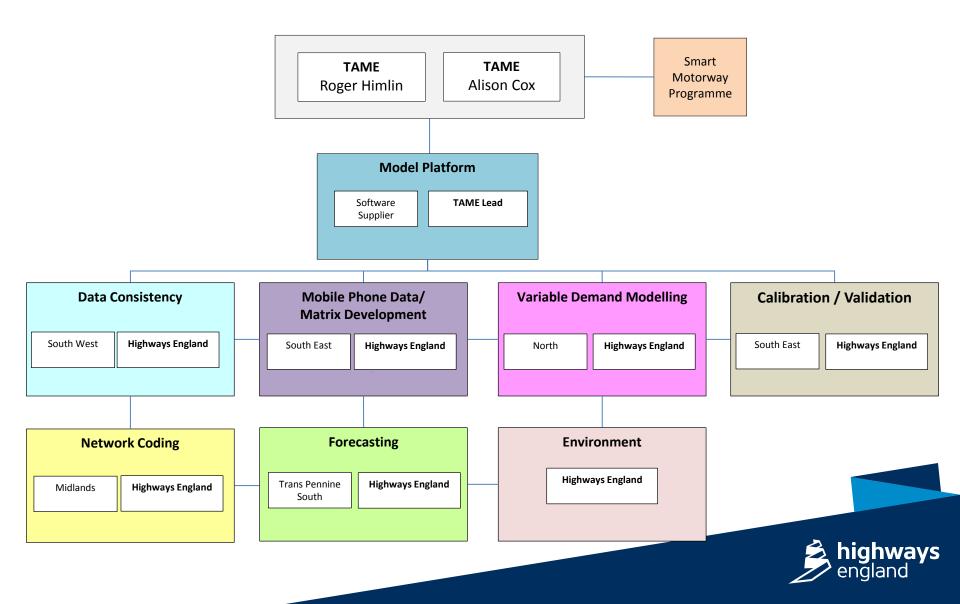
Background and Objectives


Background

- Highways England tasked with delivering over 100 major schemes within RIS1 2015 2020.
- Historically building individual scheme models is time consuming
- Required approach to speed up the modelling and appraisal process
- Regional modelling approach will give scheme appraisal a head start
- Schemes will either be assessed entirely within RTMs or as donor model
- Will enable national impact of RIS 1 to be understood
- Will inform the development of RIS 2

Model Objectives

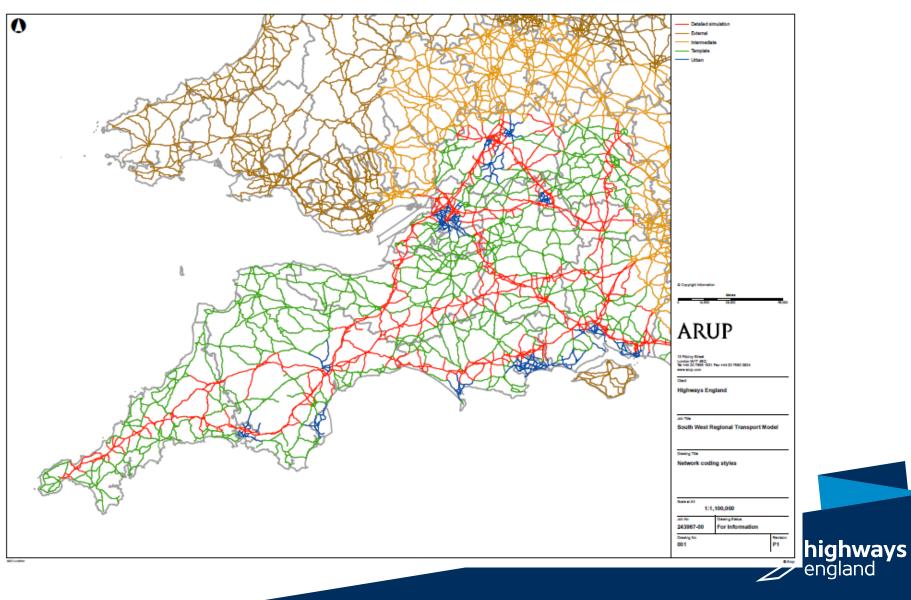
- To use a common software platform
- To follow a common approach
- To use common data sources
- To maximise RTM model use for scheme appraisal
- To use GIS front end for visual presentation



Key Challenges to Delivery

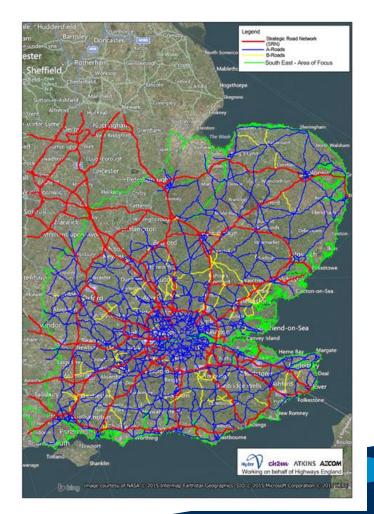
- Tight Timescale
- Size of Models
 - Software Requirements
 - Hardware Requirements
 - Run times
 - Number of Zones
- New Sources of Data
 - Mobile Phone
 - Data fusion
- CONSISTENCY

Key Objective - Technical Consistency

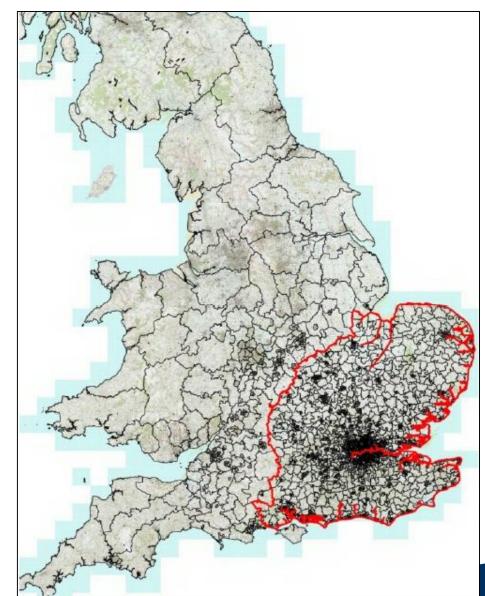


Network Development

- Common buffer network from ITN layer
- Software capabilities and model run times drive level of network coding and zoning
- Detailed simulation coding focussed on SRN and RIS scheme areas with graduated zoning system applying away from SRN
- All junctions on SRN are coded in simulation allowing for blocking back/flow metering.
- The simulation network includes
 - all the motorways and A roads managed by Highways England;
 - Other "A" roads and "B" roads with material role in allowing traffic to access SRN;
 - any local roads or "C" roads that are necessarily included in order to capture local traffic routing realistically.
- Network outside the region of focus mainly modelled as simplified simulation network
 - Speed/flow curves
 - Dummy nodes with max turning saturation flow to avoid unrealistic junction delay
 - Urban areas coded as fixed speeds derived from Trafficmaster data



Network Detail


Network Development

- RTM common coding manual to ensure consistency
- SATCODER being used by some of model teams.
- Common network validation checks

Model Zoning

Regional	Total Zones	Total Internal		
Traffic Model		Zones		
South East	2,268	2,172		
South West	1,901	1,627		
Midlands	1,481	1,166		
TPS	1958	~1,833		
North	1,253	1,161		

Highway Model Trip Matrix Development

- Highways England mobile phone data contract awarded to Telefonica Jacobs
- Mobile phone data to form the backbone of the trip matrices
- Matrices being developed with provisional data
 - Average 20 weekdays March
 - HBW, HBO, NHB
 - Road based
 - Granularity MSOA, start time
- Short distance trips being infilled using synthetic matrices

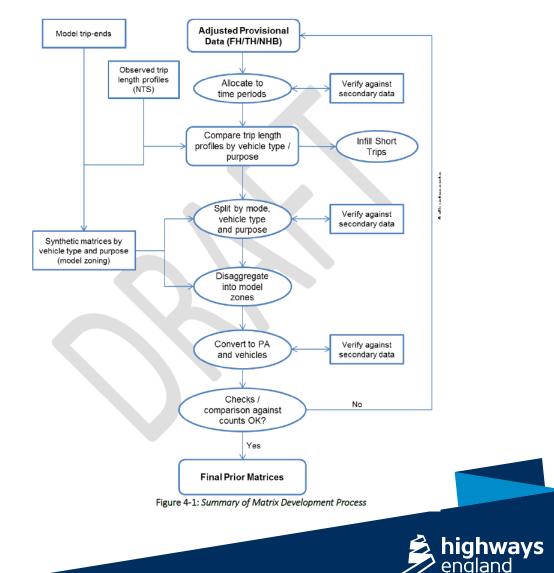
Issues with Mobile Data to date....

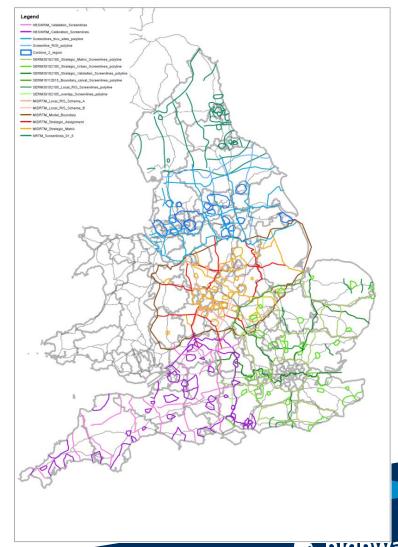
- Key strengths of data compared to conventional data sources
 - Wider geographical coverage
 - Higher sample size, capturing day-to-day variability of trips
 - Potential time and cost savings for data collection and processing
- Weaknesses/Uncertainties
 - definition of a trip
 - spatial resolution and data accuracy
 - short trip
 - mode, vehicle type and vehicle occupancy
 - trip purpose
 - expansion
 - stochastic rounding due to privacy

Mobile Phone Data Verification Checks

- Trip-ends & symmetry
- Trip rates
- Trip distribution pattern
- Trip length profile

- Trip Purpose allocation
- Daily profile of trips
- Level of vehicle flows


Test ID	Demand Indicator	Data Check / Comparison	Analysis Approach	Geographical Level	Criteria	Purpose of Test / Problems to Identify	See Note
A Trip-	Removal of Rail Trips	All day HBW from-home origins and destinations vs. Census JTW 'home' and 'work' locations, separately for JTW data with and without rail trips	Regression analysis / scatter plots	MSOA / Model Zones / LA Districts	No criteria, comparison of R ² values, look for outliers	 Verify removal of rail trips 	1
	Trip-ends	All day from-home trip origins and to-home trip destinations vs. Census population, separately for HBW and HBO trips. All day HBW from-home origins and to- home destinations vs. Census JTW 'home' locations	Regression analysis / scatter plots	MSOA / Model Zones / LA Districts	$R^2 \ge 0.90$, slope close to unity and small intercept (at LA district level only)	 Spatial accuracy of trip allocation to MSOAs Inform requirements for defining mobile data sectors as aggregations of 	2
		All day trip origins and destinations vs. customised NTEM trip-ends, separately for HBW, HBO, and NHB.	Regression analysis / scatter plots	Model Zones	$R^2 \ge 0.90$, slope close to unity and small intercept		
	Symmetry	From-home vs. to-home (all day, all purposes) From-home vs. to-home (all day, HBW) All origins vs. all destinations (all day, all purposes)	Regression analysis / scatter plots	MSOA	R ² ≥ 0.95, slope close to unity and small intercept		
		Undertake the test for matrix cells			No criteria		


Creation of Prior Matrices

- Matrix Adjustments
 - Excluding bus and rail
 - Spatial resolution
 - Infilling short trips
 - Expansion

Model Calibration and Validation

- Emerging principles and levels of acceptability from TCG
 - Consistent screenlines between models at boundaries
 - Internal inter urban screenlines
- Validation will be aggregated into different areas of interest
 - Focus on the areas where RIS schemes are proposed and SRN

Variable Demand Model

- DIADEM
- Public Transport represented by cost changes
- DIADEM enhancements desirable:
 - initiated from a command line
 - able to undertake the same lognormal function that is being considered for the derivation of the synthetic matrices
 - providing greater flexibility in definition of vehicle occupancies (e.g. by time period and distance, or by matrix cell\sector)
 - providing greater flexibility in period to hour factors
 - providing the option to specify fixed costs for some time periods (particularly Off Peak so that DIADEM does not need to run an OP assignment)
- Creating a common process by which input and output files are managed, stored and processed – VBA?
- New VoT represented by continuous distance function

Quick straw poll:

Who here has played a modern computer game or seen one being played?

- Reasonable resolution monitor
 - 1920 x 1080
- 60 frames per second minimum (demo maxed at 200fps)
- ~125-415 million calculations per second
- CPU: Maximum of 16 cores? Roughly
- Current cutting edge GPU?

- NVIDIA Titan X: 3,072 cores!
- 1.5 teraFLOPS equivalent to the supercomputers of 1996!
- So why can't we use this brute force already?
- GPU languages ≠ CPU languages
- But!

- NVIDIA CUDA
- 'Wrapper' for CPU languages.
- What have other industries seen?
- Hydrographic modelling:
 - speed up factors of x 90 with a single GPU (7 days \rightarrow 1.8 hours)
 - speed up factors of x 125 with two GPUs (7 days \rightarrow 1.3 hours)
- CUDA Fortran released in 2009
- The chance for SATURN to run on a GPUL

- Not all areas of traffic modelling are 'massively parallel', but certainly large areas are!
- Highways England / Transport Systems Catapult / University of Sheffield (NVIDIA) / Science & Technology Facilities Council & Atkins – proof of concept for transport modelling
- What else consists of massively parallel calculations?...VDM
- DIADEM

