Institute for Transport Studies

Research in Modelling Motorway Merging and Weaving

Ronghui Liu (R.Liu@its.leeds.ac.uk) Institute for Transport Studies (ITS), University of Leeds, UK

> with Thanks to: Jiao Wang and Andyka Kusuma

SATURN UGM, 15 November 2013

Contents

- Part I: Motorway merge:
 - Current practice in modelling motorway merging
 - Research findings: empirical and microsimulation
 - Implications for modelling
- Part II: Motorway weaving
 - Specifications of motorway weaving
 - An empirical study of the traffic characteristics at a weaving

Modelling motorway merge current practice

- Merging area modelled as a give-way node, via standard gap-acceptance model
- One fixed gap by time of day, by population
 - Cannot distinguish different user class/vehicle type
 - No difference in the 1st, 2nd, 3rd, ... gap a driver accepts => under estimation of entry capacity
- Gaps are often inferred from average flow-delay functions
 - In SATURN, this is suggested to be the inverse of saturation flow
- Vertical queuing model
 - all vehicles wait by the stopline
- No explicit consideration of acceleration lanes

Correction methods in SATURN

- Cooperative lane choice: the use of parameter "Apresv"
 - To represent willingness of mainline traffic to accommodate merging
 - Moving a proportion of lane 1 traffic to lane 2
- Adding merge delay to post-merge traffic
 - To model delays to mainline traffic at merge
 - Insert a dummy node downstream of merge (up to 2km)
 - "Q-node" method: delay based on COBA delay function
 - "Stopping-node" method: delay due to capacity constraint

DMRB advice on modelling merge (I) UNIVERSITY OF LEEDS

• Link speed-flow relationships

ſ

$$V(q) = \begin{cases} V_{F} & q \leq Q_{B} \\ V_{B} + \frac{(V_{C} - V_{B})(q - Q_{B})}{(Q_{C} - Q_{B})} & \text{for } Q_{B} < q \leq Q_{C} \\ \frac{V_{C}}{1 + V_{C}(q - Q_{C})/(8Q_{C})} & q > Q_{C} \end{cases}$$

- Capacity at merge: $Q = Q_0/[1+0.01P_{HV}(F_{HV}-1)]$ veh/hr/lane
 - Q₀=2330 veh/hr is capacity without heavy vehicles (HV)
 - Affected only by percentage HVs (P_{HV})
 - F_{HV}=2.5 is the default pcu value of HV

DMRB advice (II)

- Merging area is modelled as a node with 'no priority'
- Merge delay=227(V/C 0.75) sec/veh
 - Added on top of link speed-flow curve
 - To both mainline and merging vehicles
- Merge influence felt up to 2km downstream

Comparison with HCM and HBS – capacity function

Comparison with HCM and HBS - overview

Concept of capacities and merge influence area

Concept	DMRB	НСМ	HBS
Merge influence area	2km	450m, 2 lanes	1 lane
Concept of capacity	$Q_{c1} = Q_{c2}$	Q _{c1,} Q _{c2} separate	Q _{c1} , Q _{c2} separate
Measurements	15-min peak flow	15-min peak flow	
Peak flow profile correction	no	Yes	

An empirical Peak-Hour-Factor

- Observation:
 - J10 J11 (clockwise) on M25 motorway in England, 8am-9am
 - 19 MIDAS detector data on 15-min and 1-hr averaged flow

- Average observed PHF on M25 is 0.9 (HCM default 0.88)
- M25 congested most of the day; its peak period demand profile might be more uniform than other motorway networks in the UK

A microsimulation model of merge

- MergeSim developed by Jiao Wang (2006, ITS)
 - Designed to model the microscopic behaviour at merge:
 - Merge vehicle C follows leaders L, and PL
 - Veh C takes smaller gaps as it gets closer to the end of acceleration lane
 - Cooperative lane-change at merge: Lane 1 traffic (PF) moves to Lane 2
 - Courtesy yielding: Lane 1 traffic (PF) slows down for merging vehicle

Capacity at merge, and extend of merge influence

• Simulated speed-flow relationships

• Max. throughputs along road section

- Capacity higher at vicinity of merge
- Merge influence confined within 500m downstream

Impact of traffic composition on merge capacity

• Test scenario: seven levels of P_{HV} at 0, 5, 10, ..., 30%

P _{HV} (%)		0	5	10	15	20	25	30
Capacity	DMRB(2.5)	2300	2167	2026	1902	1792	1694	1606
	Simulated Q _{c1}	2190	2104	2080	2044	2026	1976	1968
	Simulated Q _{c2}	2088	2055	2021	1984	1965	1924	1921
	DMRB(1.5)	2200	2113	2089	2053	2035	1985	1977
Pcu	DMRB		2.5	2.5	2.5	2.5	2.5	2.5
values	Simulated		1.82	1.53	1.48	1.4	1.43	1.38

- Q_{c1} higher than Q_{c2} by 60 veh/hr (3%), similar to HCM estimates at 70mph
- With F_{HV} = 2.5, DMRB capacity decreases more rapidly than simulated
- With F_{HV} =1.5, DMRB capacity similar to simulated Q_{c1}

Summary

- Current UK method was based on studies of traffic data 20 years ago; new interpretation need to take into account:
 - Effect of peak flow profiles
 - Impacts of HVs
 - Differences between junction capacity and link capacity
 - Differences in delays to mainline and to merging traffic
- Suggestions for quick fixes:
 - An empirical PHF of 0.9 is found for M25 -> reduces capacity by 10%
 - Merge capacity higher than motorway link capacity (by 3% at 70mph)
 - DMRB capacity with F_{HV} =2.5 is overly sensitive to P_{HV} ; a F_{HV} =1.5 is found a better fit the simulated result
 - Merging turbulences confine within 500m downstream
- Further empirical and detailed microsimulation analysis to help develop better (macroscopic) traffic models

Motorway weaving

- DMRB (2006):
 - the distance between a successive merge and diverge where vehicles have to cross the paths of vehicles that have joined the mainline at the merge
 - the distance between merge and diverge < 2000m

Study site 1

• A weaving section on a four-lane dual carriageway on A5103

- The distance between those measurement location is 50m.
- Traffic is recorded by video camera
- The extraction focuses on the highest 5 minutes period, 15.35-15.40

Traffic Characteristic

Data Extraction Result (5 Minutes Period)

- Vehicle Composition
 - -524 vehicles passing through the A5103, during the 5min period
 - Car (79.8%), MPV (7.1%), Van (6.7%), LGV (3.1%), HGV (1.9%), Bus/Coaches (1%) and MC (0.6%).
- Weaving movements
- 81 weaving movements observed
- 48% weaving between lanes 1 and 2
- More weaving out (26% lane-changing from lane 1 to exit slip road), than weaving in (15% from entry slip road to lane 1)

Gap Acceptance

- The leading vehicles critical gaps are 4.03 sec (current lane) and 1.36 sec (target lane) in average.
- the following vehicles critical gaps are 2.61 sec (current lane) and 4.88 sec (target lane).
- Based on Type of Vehicle (in Seconds)

Table. Predicted critical gap (unit: seconds)

Leading	Gap Ev	ent		Gap Event		
Vehicle	Current Lane Target Gap		Following Vehicle	Current Lane	Target Lane	
Heavy	0.81	0.62	Heavy	4.62	15.33	
Heavy	1.78	1.15	Small	2.60	7.44	
Small	5.07	2.82	Heavy	1.01	5.97	
Small	4.04	1.30	Small	2.67	4.03	

Study site 2:

- Site
 - M1 between J42 and J43
 - A dual carriageway, five lanes each direction
 - Section length ~1400m (a weaving section)
- Observation
 - N-bound traffic merge at J42
 - Video recording of PM peak (16:00-18:30, 15 June 2013), taken over footbridge 900m downstream from J42
 - MIDAS loop detector data

Observation and Data Extraction...

Observation and Data Extraction...

• The Data Extraction Process

Video data extraction:

- Type of Vehicle
- The passage time of the nth vehicle at the measurement location
- Time and Location for lanechanging

Figure: The Data Extraction Interface (Software: Semi-Automated Video Analyser, KTH)

Traffic Characteristic – video observations

• Traffic Flow between 16:30-17:30 over the first 200m from J42:

		Type of Vehicle (PCU value)						Total	
Time	Car	MPV	Van	LGV	HGV	Bus	Vahiala	DCU	
	(1.0)	(1.0)	(1.0)	(1.5)	(2.5)	(2.5)	venicie	PCU	
16:30-16:45	979	54	119	53	19	0	1224	1279	
16:45-17:00	944	23	76	43	20	2	1108	1162	
17:00-17:15	1083	40	111	9	62	1	1306	1405	
17:15-17:30	1202	29	94	7	46	2	1380	1455	

(The pcu value is based on the HCM 2010)

• Traffic speed (kph) for the highest 5 minutes between 17:15-17:20

Type of	Statistic Results						
Vehicle	Mean	S.D	No.Data				
All	68.1	10.5	420				
Car	68.2	10.4	362				
MPV	69.1	10.9	29				
Van	68.1	10.0	11				
LGV	61.5	9.6	4				
HGV	55.2	3.3	14				

Traffic Characteristic...

Figure. The Location of Lane Changing

- 42.9% of lane changing occurs in the first 50m (from M to N), of which
- 37.4% are weaving between Lane 1 and the two Auxiliary lanes

On-going research:

- Incorporate MIDAS loop detector data into analysis
- Capacity analysis at weaving
- Car-following, gap-acceptance and lane-changing at weaving
- Microscopic analysis of weaving => simpler (macroscopic) models of weaving

Institute for Transport Studies

Thank you

Ronghui Liu <u>R.Liu@its.leeds.ac.uk</u>

0113 343 5338

Institute for Transport Studies (ITS), University of Leeds, UK

with Thanks to: Jiao Wang and Andyka Kusuma

SATURN UGM, 15 November 2013

Example analysis: consequence of changing the value of capacity

- Test scenarios:
 - 1km section with 500 merge influence area and 500 downstream
 - 3 levels of total traffic flow, 3 capacity values
 - Travel time estimated from DMRB speed-flow and queuing delay

Flow/Capacity	Link travel	time (sec/veh)		Queuing delay (sec/veh)			
(veh/hr)	Qc-2024	Qc-2112	Qc-2330	Qc-2024	Qc-2112	Qc-2330	
Low flow (1600)	11.4	11.2	10.8	9.2	1.7	0.0	
Medium (2000)	14.1	13.5	12.5	54.1	44.7	34.3	
High flow (2400)	22.2	22.2	18.0	98.9	87.7	75.2	

Total	Total travel time (sec/veh)			Difference	Difference relative to that at Qc=2330		
Low flow	20.6	12.9	10.8	191%	119%		
Medium flow	68.1	58.2	46.7	146%	125%		
High flow	121.1	109.9	93.2	130%	118%	זרוו	

Impact of traffic composition on merge delays

 \bullet Journey times increase with P_{HV}

• Journey time of the mainline traffic different to that of merging traffic

 \bullet Mainline to merging journey time difference steadily increases with ${\rm P}_{\rm HV}$

• Perhaps, with more HVs, more platoons forming, making merge easier?

