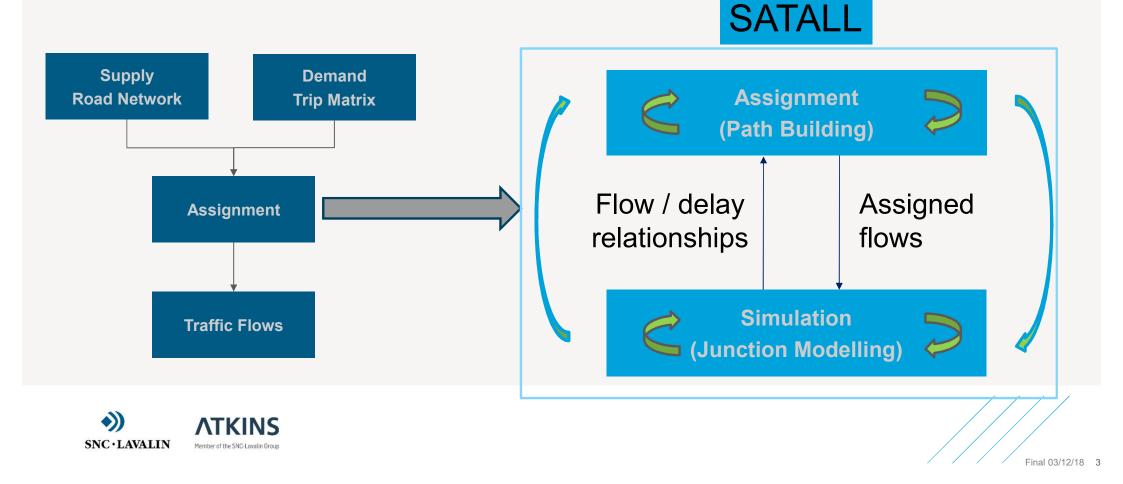
SATURN

\$

SATURN 101: Part 3 – Improving Convergence

2018 User Group Meeting


November 2018 Final 03/12/18 - UGM2018 SAT101 Part 3 Improving Convergence

SATURN Assignment 101 Part 3 - Recap on SAVEIT Approximations

SATURN Assignment 101 - Quick Recap (from last year!)

SATURN Assignment 101 - Assignment Process

	Flov	Cumulative (AON)		
Loop	Assignment		Simulation	Paths
1	20 Path Builds	→20	Simulation Iterations	0 + 20 = 20
2	20 Path Builds	→20	Simulation Iterations	20 + 20 = 40
3	20 Path Builds	20	Simulation Iterations	40 + 20 = 60
 n	20 Path Builds	→ 20	Simulation Iterations	= n * 20
	•		ow / Delay urves	
SNC · L	AVALIN Member of the SNC-Lavalin Group			Final 03/12/18 4

Step 3a – SAVEIT Approximations

Cost data stored in the UFC file for secondary analysis

Recreates assignment using either :

> the original full set of paths used or a SAVEIT approximation

- By default, UFC109=T & NITA_C=256 so
 - > full set saved unless cumulative path builds > 256
 - > otherwise SAVEIT used maximum no. of path builds set by NITA_S

Value of NITA_S is very important

- > If too small (e.g. 25!) then too few paths used in SAVEIT approximation
- > Likely that very poor Wardrop solution (Approximation %GAP >> Final %GAP)
- > Use v11.4 default: NITA_S=256 is sensible

Support feedback:

- Models with very large values of NITA_C or NITA_S (eg > 600)
- > Not required check what's required!
 - > very large UFC files, significant extra CPU for SAVEIT and long runtimes for secondary analysis

Final 03/12/18

Step 3b – Checking SAVEIT Performance

Reports in the LPT file

- > Compares accuracy of main assignment versus SAVEIT
 - > Take %Epsilon rather than %Delta

Bad Example: %Epsilon = 0.1743%

WARDROP MUC USER EQUILIBRIUM ASSIGNMENT

TREE BUILDING AND LOADING ALGORITHMS ARE BASED ON A SPIDER WEB AGGREGATION OF NETWORK NODES AND LINKS.

>>>> REASSIGNMENT STOPPED AFTER 25 ITERATIONS >>>> MAXIMUM NUMBER OF ITERATIONS NITA EXCEEDED

FINAL CONVERGENCE STATISTICS AND STOPPING VALUES

25	GE	25	-	NUMBER OF ITERATIONS (<nita)< th=""></nita)<>
11.11	LT	0.05	-	% OF NEW A-O-N LOAD USED (<xfstop)< p=""></xfstop)<>
0.1644 0.019				% DELTA (ACTUAL COSTS LESS MINIMUM COSTS) % CHANGE IN TOTAL TRAVEL COSTS (LAST ITER)
0.1743	LT	0.0098	-	<pre>% EPSILON: UNCERTAINTY IN THE OBJ. FUNCTION (<uncrts)< pre=""></uncrts)<></pre>
1.983	LT	0.05	-	(RELATIVE TO THE OBJECTIVE FUNCTION) & REDUCTION IN THE UNCERTAINTY (<fistop)< td=""></fistop)<>
0.010			-	(RELATIVE TO THE UNCERTAINTY) % REDUCTION IN THE OBJ. FUNCTION (RELATIVE TO THE OBJECTIVE FUNCTION)

0.397465E+09 - FINAL OBJECTIVE FUNCTION VALUE

Good Example: %Epsilon = 0.0098%

WARDROP MUC USER EQUILIBRIUM ASSIGNMENT

TREE BUILDING AND LOADING ALGORITHMS ARE BASED ON A SPIDER WEB AGGREGATION OF NETWORK NODES AND LINKS.

>>>> SAVEIT CONVERGENCE ACHIEVED AFTER 150 ITERATIONS >>>>

FINAL CONVERGENCE STATISTICS AND STOPPING VALUES

150 1.03				NUMBER OF ITERATIONS (<nita) % OF NEW A-O-N LOAD USED (<xfstop)< th=""></xfstop)<></nita)
0.0103 0.000				& DELTA (ACTUAL COSTS LESS MINIMUM COSTS) & CHANGE IN TOTAL TRAVEL COSTS (LAST ITER)
0.0098	LT	0.0098	-	& EPSILON: UNCERTAINTY IN THE OBJ. FUNCTION (<uncrts) (RELATIVE TO THE OBJECTIVE FUNCTION)</uncrts)
0.823	LT	0.05	-	<pre>% REDUCTION IN THE UNCERTAINTY (<fistop) (relative="" pre="" the="" to="" uncertainty)<=""></fistop)></pre>
0.000			-	<pre>% REDUCTION IN THE OBJ. FUNCTION (RELATIVE TO THE OBJECTIVE FUNCTION)</pre>

Final 03/12/18 6

0.397085E+09 - FINAL OBJECTIVE FUNCTION VALUE

Impact on TUBA Scheme Appraisal

- Illustrative Example

Two Scenarios (With & Without Scheme), 60 year appraisal

	Ref Case	Run 1	Run 2	Run 3	Run 4	Run 5
NITA_S	256	25	99	256	256	256
NISTOP	4	4	4	5	4	4
RSTOP	98.5%	98.5%	98.5%	98.5%	97.5%	94.5%
AM - %Flow	98.9%	98.9%	98.9%	98.5%	98.0%	96.7%
AM - %GAP (Main)	0.009%	0.009%	0.009%	0.008%	0.010%	0.036%
AM - %GAP (SAVEIT)	0.010%	0.164%	0.016%	0.008%	0.012%	0.036%
PVB (Index)	100	85 !!!	95	95	95	95
						///

ATKINS Member of the SNC-Lavalin Group

Part 3 – Resolving Poor Convergence [and reducing runtimes]

Step 1 – Taking Stock

Reference Benchmark

- > DIADEM-based Variable Demand Model
 - > Four loop assignments undertaken in parallel
 - > TS1 (AM), TS2 (IP), TS3 (PM) and TS4 (Off-peak)
- > Check overall convergence using SATSTAT
 - > For more detailed information see **Table 1 in LPT**

Process	Loops	%Flow	%GAP	Total CPU (mins)	WebTAG?
AM Peak	96	98.0%	0.01%	82.8	Yes
Inter Peak	70	99.0%	0.02%	35.5	Yes
PM Peak	120	96.4%	0.02%	120.1	Νο
Off Peak	10	99.3%	0.00%	1.3	Yes

ASSIGNMENT/SIMULATION LOOP SUMMARY STATISTICS

Table 1: Convergence Statistics by Sub-Model and Loops

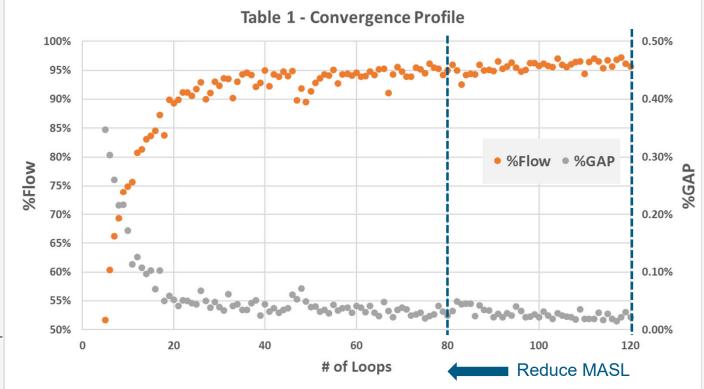
Ass. - DELTA FUNCTION (%) / NUMBER OF ITERATIONS Sim. - FINAL AVER ABS CHANGE IN OUT CFP (PCU/HR) / NUMBER OF ITERATIONS A/S Step - Step Length used on Ass/Sim Loop / Simulation Iterations %FLOWS - LINK FLOWS DIFFERING BY < 1% BETWEEN ASS-SIM LOOPS</pre> \$DELAYS - TURN DELAYS DIFFERING BY < 1% BETWEEN ASSIGNMENT & SIMULATION</pre> %V.I. - VARIATIONAL INEQUALITY - SHOULD BE > 0 %GAP - WARDROP EQUILIBRIUM GAP FUNCTION POST SIMULATION

LOOP	Ass.	Sim.	A/S Step	%FLOWS	*DELAYS	%V.I.	%GAP
2 (3 (4 (D.375/30 D.319/18 D.189/18 D.157/18 D.157/18	0.181/51 0.032/15 0.072/24 0.088/32 0.041/11	1.000/ 1 1.000/ 1 0.897/ 2 1.000/ 1 0.662/ 3	23.8 33.9 43.6 50.4	49.1 75.4 83.0 86.2 87.6	0.211 0.0047 0.025 0.0056	3.550 1.450 0.886 0.678 0.353
100 0 101 0 102 0 103 0 105 0 106 0 107 0 109 0 110 0 111 0 112 0 113 0 114 0 115 0 116 0 116 0 117 0 118 0 119 0	0127/24 0121/24 0130/24 0142/24 0138/24 0138/24 0138/24 0143/24 0129/24 0150/24 0150/24 0112/24 0433/24 0106/25 0091/25 0098/25 0098/25 0105/25	0.067/ 6 0.063/13 0.059/10 0.066/16 0.036/ 5 0.039/ 6 0.060/ 6 0.071/ 7 0.042/ 9 0.025/12 0.014/ 5 0.050/ 4 0.052/ 6 0.016/ 5 0.051/ 6 0.013/ 4 0.037/10 0.044/37 0.031/ 9 0.022/ 8 0.034/ 7	0.209/ 2 0.191/ 3 0.282/ 2 0.077/ 6 0.128/ 4 0.153/ 4 0.218/ 3 0.273/ 2 0.174/ 2 0.076/ 7 0.145/ 4 0.019/ 9 0.002/ 9 0.065/ 6 0.084/ 5 0.179/ 4 0.180/ 2 0.004/ 9 0.134/ 4 0.145/ 3	95.7 96.0 95.9 95.2 95.2 95.2 95.6 95.3 95.6 95.3 95.0 96.4 91.9 95.6 95.7 96.1 96.6 95.5 96.0 96.0 96.4	97.2 97.2 97.1 97.3 97.0 97.1 97.1 96.9 97.1 96.9 97.0 97.3 96.3 97.0 97.3 97.3 97.6 97.3 97.3 97.3 97.3 97.3	0.00029 0.00096 0.00041 0.00040 0.00048 0.00025 0.00025 0.00026 0.00026 0.00040 0.00058 0.0010 0.00058 0.0010 0.00030 0.00033 0.00012 0.00020 0.00020 0.00020	0.021 0.025 0.024 0.029 0.025 0.028 0.025 0.027 0.029 0.019 0.048 0.025 0.027 0.029 0.048 0.025 0.024 0.028 0.028 0.028 0.024 0.018 0.018
LOOP	Ass.	Sim.	A/S Step	%FLOWS	&DELAYS	%V.I.	%GAP

Findings: %Flows oscillating around 96% %Gap < 0.02% and stable

Step 2 – Examine %Flows & %Gap by Loop

Investigate convergence profile


Table 1 shows

- > PM fails to converge after 120 loops
 - > %Flow = 96.4%, %GAP = 0.02%
- > But similar performance for 80 loops
 - > %Flow = 96.7%, %GAP = 0.02%

Extra loops not adding any significant improvement to convergence levels achieved

- > Reduce MASL from 120 to 80
 - > Likely reduction in CPU times of ~25%
- If not converge in (reasonable) 100 loops then investigate!
 - Don't just up the MASL value and hope for the best ...
 - Saves a lot of time & more stable assignment

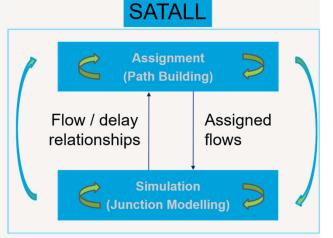
Step 3 – Where is the CPU being expended? (& peculiarity of the RTMs)

Look for CPU Runtime report

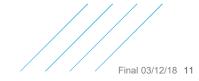
> Either P1X -> Convergence or bottom of the LPT File

Remember - within SATURN

- Assignment = Multi-threaded process (Very fast!)
- Simulation = Single-threaded process (Very slow!)


With the larger RTMs

- > Majority of CPU time spent in single-threaded simulation
- > Optimise parameters to re-balance algorithm
 - > Increase proportion of faster assignment iterations
 - > Reduce proportion of fewer slower simulation iterations


Recommendation

- > Set NITS = 20 not 50 (RTM default)
- May need to increase MASL to compensate -> Test!

Process	Loops	Ass Time (mins)	Sim Time (mins)	UFC Time (mins)	%Ass Time	%Sim Time	Total CPU (mins)
AM Peak	96	34.6	44.5	3.4	42%	<u>54%</u>	82.8
Inter Peak	70	17.4	13.2	3.7	<u>51%</u>	38%	35.5
PM Peak	120	28.8	89.4	1.8	24%	<u>74%</u>	120.1
Off Peak	10	0.7	0.4	0.0	<u>56%</u>	31%	1.3

Step 4 – Take Stock again

(i) Starting Point

Process	Loops	%Flow	%GAP	Ass Time	Sim Time	Total CPU (mins)	
AM Peak	96	98.0%	0.01%			82.8	
Inter Peak	70	99.0%	0.02%			35.5	
PM Peak	120	96.4%	0.02%			120.1	
Off Peak	10	99.3%	0.00%			1.3	
Elapsed Time						120.1	

Results so far:

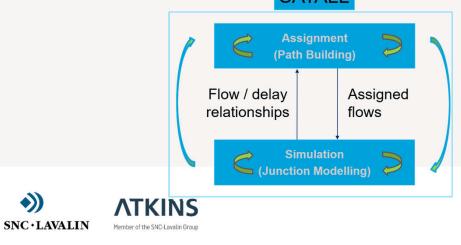
- > Overall saving = 1hr or 2x faster
- > Don't forget to check SAVEIT values

Next step:

> Let's improve the PM convergence

Process	Loops	%Flow	%GAP	Ass Time	Sim Time	Total CPU (mins)
AM Peak (Rev.)	80	97.3%	0.02%	28.9	37.1	69.6
Inter Peak	No char	nge as ter	minates	within 80	loops	
PM Peak (Rev.)	80	96.7%	0.02%	19.2	59.6	82.3
Off Peak	As per l	nter Peak	ζ.			
Elapsed Time						82.3
(iii) Reduce	e NIT	S (50	->20)			
(iii) Reduce Process	e NIT	,	,	Ass Time	Sim Time	Total CPU (mins)
		,	,	Ass	•	
Process	Loops	%Flow	%GAP	Ass Time	Time	CPU (mins)
Process AM Peak (Fin.)	Loops 80	%Flow 98.0%	%GAP 0.02%	Ass Time	Time 25.1	CPU (mins) 61.0
Process AM Peak (Fin.) Inter Peak (Fin.)	Loops 80 65	%Flow 98.0% 98.6%	%GAP 0.02% 0.02%	Ass Time 30.8 19.2	Time 25.1 11.6	CPU (mins) 61.0 36.4

Part 3 – Checking the Simulation


Step 5a – Search for the instabilities within the assignment

SATURN assignment is an iterative process

- Convergence = measure of the stability (flow) and proximity (Wardrop equilibrium) of the assignment
- Differences between successive estimates of flows & delays is key <u>not</u> the absolute value
- > So: need to search for these differences

Popular misconception:

 Heavily congested networks do not automatically mean poor convergence
 SATALL

Search for the last Table L(8) in LPT File

Table L(8)

WORST TURN DELAY DIFFERENCES: (LOOP 120 REPETITION 3) BETWEEN THE SIMULATED DELAYS (CURRENT) AND THE DELAYS CALCULATED BY THE ASSIGNMENT (PREVIOUS) (See 9.9.1 of the SATURN Manual)

R/	ANK A	В	С	D	ELAYS	5	CAPAC	ITIES	ACT FLOW
				DIFFERENCE	CURRENT	PREVIOUS	CURRENT	PREVIOUS	PCU/HR
1	87964	81636	81635	652.74	887.17	234.43	49.66	49.66	69.74
2	72888	72889	78008	557.06	683.48	126.42	436.62	437.20	594.77
3	80854	81745	80774	-453.83	76.28	530.11	179.37	179.70	176.23
4	80854	81745	80402	-394.07	76.23	470.30	1124.59	1125.13	1115.25
5	83194	83195	82184	376.32	508.70	132.39	85.17	85.20	97.27
6	83194	83195	83196	343.14	480.55	137.42	9.18	9.20	10.48
7	87964	81636	81959	283.76	351.78	68.02	130.30	130.59	145.79
8	87964	81636	81960	281.97	355.92	73.95	274.63	274.34	307.27
9	81771	81749	84634	234.42	1026.85	792.43	52.11	50.97	76.10
10	76442	70597	70623	192.53	270.37	77.84	67.68	67.68	72.04

 Shows Top 10 largest differences in <u>turn-delays</u> between <u>successive</u> assignment-simulation loops

- > Less than <100 seconds is good
- Watch out for '*' markers showing blocking back turning on/off

Step 5b – Search for the locations where instabilities occur

Re-ordering for clarity

Table L(8)

BETWEEN THE SIMULATED DELAYS (CURRENT) AND

	THE DELAYS CALCULATED BY THE ASSIGNMENT (PREVIOUS) (See 9.9.1 of the SATURN Manual)							
RANK	А В	с	D DIFFERENCE				-	
7 8796	4 81636 4 81636 4 81636	81959	283.76		68.02	130.30	130.59	
2 7288	8 72889	78008	557.06	683.48	126.42	436.62	437.20	594.77
	4 81745 4 81745			76.28 76.23			179.70 1125.13	
	4 83195 4 83195			508.70 480.55			85.20 9.20	
9 8177	1 81749	84634	234.42	1026.85	792.43	52.11	50.97	76.10
10 7644	2 70597	70623	192.53	270.37	77.84	67.68	67.68	72.04

WORST TURN DELAY DIFFERENCES: (LOOP 120 REPETITION 3)

Three links to focus on:

Link (A-B)	Ave Delay Diff (secs)	Total Flow (pcu/hr)	Total Delay Diff (pcu-hrs)
87964 - 81636	+332	523	+48.2
72888 – 72889	+557	595	+92.0
80854 - 81745	-402	1291	-144.3

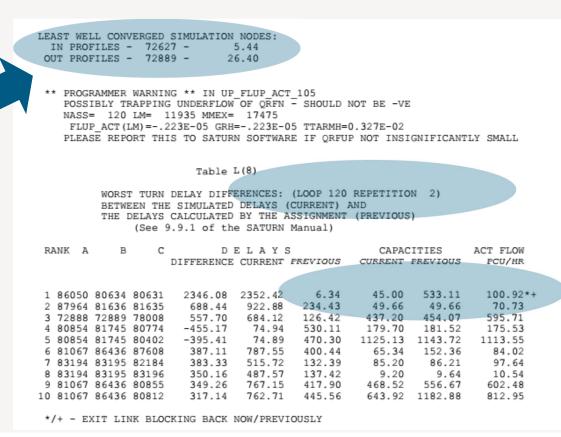
Secondary Sources available

Final 03/12/18 15

Step 5c – Secondary Sources

Stability in the Cyclic Flow Profiles

- > 'Out' profiles = exit flows from the junction
 - > Least well converged Node 72889
 - > Target values ~ 5 or lower


Simulation Repetitions

- > Will repeat to provide more accurate solution
- > Ideally only one pass through
 - > Check repetitions for reappearing turns

Blocking back instabilities

 Table L(8) also flags turns where blocking back is switching on/off between successive loops

Final 03/12/18 16

Step 5c – P1X Sources

Plot link data for:

- Changes in Demand Flow between successive loops
 - > Switching
- > Changes in 'Block Back Factors'
 - > Turning on/off

Plot node data by:

> Convergence 'In' or 'Out' Profile

P1X Node Graphics:

> For more detailed information

Remember:

> Focussing on changes

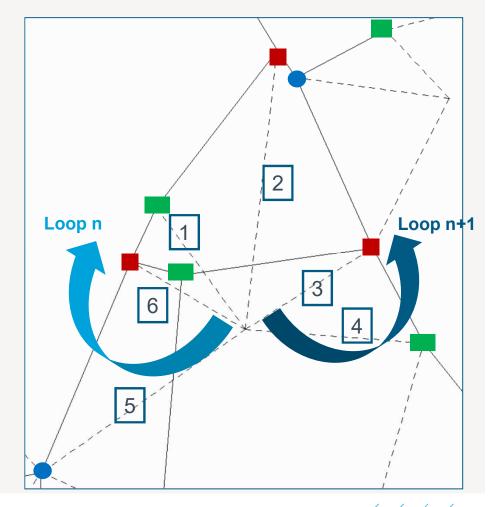
Step 6 – Address Problem Coding (i)

Spider's Web of Centroid Connectors

Multiple centroid loading points

> Coupled with detailed simulated junction coding

Imbalance between zones & network coverage


If congested, likely to cause instability in link flows due to oscillation in CC flows

For example

- > Loop N favours CCs 1 & 6
- > Loop N+1 switches to CCs 3 & 4
- Oscillates

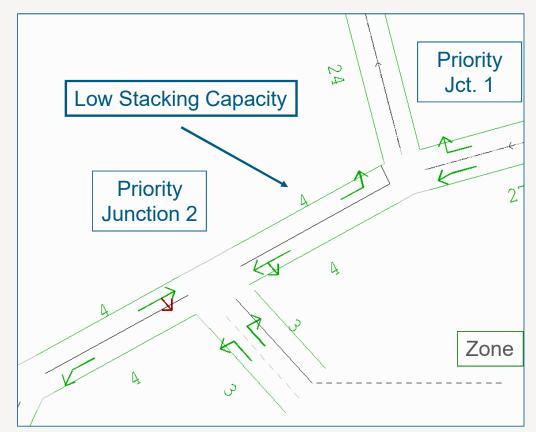
Greater impact in forecast years?

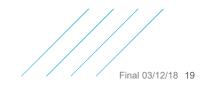
Step 6 – Address Problem Coding (ii)

Short Links causing stacking problems

Frequent occurrence

For example, link 2-1 has < 5 pcus stacking capacity


- > Blocking back from Node 1
- > Zonal flow from Node 2 now turns left
- > No blocking back at Node 1
- > Zonal flow from Node 2 now turns right
- > Repeat


Leads to instability in link flows & costs

- > Will be captured in Table L(8)
 - > Look for +/- change in block back marker ('+')

Check for Serious Warning 188

Step 6 – Address Problem Coding (iii)

Flare Coding

Provide more realistic coding options for partial lanes

In certain cases, negative impact on simulation stability when V/C >100%

Eg: Table L(8) #2 turn 72888-72889-78008 Advice:

Check junction coding & demand forecasts

Code as dedicated RT Lane?

> Reduce sensitivity

Updates for Table 2 in 11.5 Beta to indicate flare turn

234.43

126.42

887.17

683.48

49.66

436.62

49.66

437.20

69.74

594.77

Final 03/12/18 20

1 87964 81636 81635

72888 72889 78008

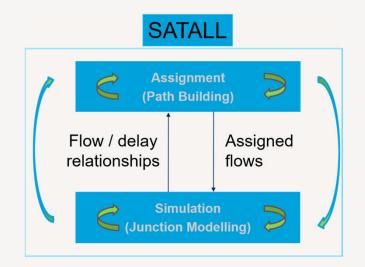
652.74

557.06

Step 7 – Migrate to latest version

SATURN v11.5

Continuous development work to improve convergence


- > Address inconsistencies within internal algorithms
- > Combat questionable user inputs

Practical testing undertaken on large range of networks

> Noticeable improvements since 11.3.12W

If problems with convergence AND

- > Sorted out the coding problems AND
- > Tried the latest release THEN
- > Contact SATURN support for assistance

Comparing 11.3.12W versus 11.4.07H for original 2031 TPS Ref Case TS3 (PM Peak) MASL=120 NITS=50

Version	Process	Loops	%Flow	%GAP	WebTAG?
11.3.12W	PM Peak	120	96.4%	0.02%	No
11.4.07H	PM Peak	108	97.8%	0.01%	Yes

Converges with SATURN 11.4.07H

SNC · LAVALIN Member of the SNC-Levelin Group

Final 03/12/18 21