Noise Annoys: Improved Reliability of Highway Travel Time Benefits

Duncan Lockwood (MVA Consultancy)

22 November 2012

Introduction

- When economic appraisal exhibits noise:
 - There is uncertainty in the measure of benefits
 - Comparison between options is not reliable
 - Overall value for money is not reliable (nor is comparison against other schemes)
- MVA examined the root cause of noise
- Developed tools to quantify the relative scale and spatial distribution of noise compared to benefits
- Considered solutions to reduce noise and took forward the preferred solution
- Used the same tools to measure the noise reduction and the improved benefit reliability

- Notional scheme for testing: simple capacity increase (road widening)
- Modelling suite: SATURN highway assignment with fixed demand matrix
- Concentrated on highway travel time savings
- Other benefits (user operator costs, noise, carbon, air quality etc) not considered
- Scheme costs were not considered
- Worked in partnership with Mouchel and Atkins (for developing new SATURN functionality)

Identifying the Problem (1)

Benefits should be:

- plausible (size and location);
- stable (or change as expected); and
- measurable compared to noise
- We tested a range of scheme options and found that benefits were:
 - inconsistent between options;
 - inconsistent between time periods for the same option;
 - did not always change as expected;
 - and we had no way to measure the scale of the benefits against model noise (TAG 10.9.24 only partly addresses this)

Identifying the Problem (2)

Further analysis showed:

- changes in flows, delays and speeds from implementing the scheme in areas where they were not plausible;
- and therefore implied benefits (or disbenefits) at nodes where the scheme would not be expected to have a measurable effect;
- changes in flows, delays and speeds between the (n) and (n+1) assignment of the same scenario
- and therefore implied benefits (or disbenefits) between the (n) and (n+1) assignment of the same scenario

Quantifying the noise

Benefits using the (n) or (n+1) iteration					
		Benefits	Disbenefits	Net Benefits	
DoMin vs DoSome	(n) iteraton	351	-281	69	
	(n+1) iteration	390	-333	56	
Implied Benefits between (n) and (n+1) iteration					
(n) vs (n+1)	DoMin	277	-261	16	
	DoSome	266	-236	29	

 Implied benefits (and disbenefits) from running an extra assignment iteration are of a similar scale to the scheme benefits

mouchelⁱⁱ mvaconsultancy

Visualising the scale of the noise compared to the benefits

The Solution Step 1: Improved Convergence

Use %GAP as the stopping criteria
Increase NITS, NITS_M and NITA_M

	Weaker convergence 10.8.22		Tighter convergence	
			10.9.24	
	DoMin	DoSome	DoMin	DoSome
	99.7%	99.5%	99.1%	99.3%
Percentage of links with flow change < 1%	99.7%	99.8%	99.2%	99.3%
Fercentage of links with now change < 1%	99.8%	99.8%	99.3%	99.4%
	99.7%	99.8%	98.9%	99.5%
%GAP	0.14%	0.16%	0.01%	0.01%
Assignment Delta / number of iterations	0.18 / 2	0.15 / 2	0.01 / 22	0.01 / 30
Loops	17	16	120	120
Run time (minutes)	50	49	117	111

Improved Convergence Results

Benefits using the (n) or (n+1) iteration						
		Benefits	Disbenefits	Net Benefits		
DoMin vs DoSome	(n) iteraton	174	-127	47		
	(n+1) iteration	189	-136	53		
Implied Benefits between (n) and (n+1) iteration						
(n) vs (n+1)	DoMin	57	-56	1		
	DoSome	89	-81	7		

The Solution Step 2: Consider More Radical Solutions

Options:

- 1. Further refinements to junction coding
- 2. Add 'unrealistic' capacity at junctions with large delays
- 3. Modify the shape of the flow-delay curves in SATURN
- 4. Allow <u>turn</u> flow-delay curves to be fixed outside an Area of Influence
- 5. Allow <u>link</u> flow-delay curves to be fixed outside an Area of Influence

Option 4 and 5 required new functionality in SATURN. See Section 15.1 of the SATURN 11.1 User Manual for details on Fixed Cost Function (FCF).

Area of Influence for FCF

Area of Influence for FCF

Area of Influence for FCF

FCF Option 4 Results

Benefits using the (n) or (n+1) iteration					
		Benefits	Disbenefits	Net Benefits	
DoMin vs DoSome	(n) iteraton	168	-97	71	
	(n+1) iteration	160	-97	63	
Implied Benefits between (n) and (n+1) iteration					
(n) vs (n+1)	DoMin	26	-28	-2	
	DoSome	18	-28	-10	

FCF Option 5 Results

Benefits using the (n) or (n+1) iteration						
		Benefits	Disbenefits	Net Benefits		
DoMin vs DoSome	(n) iteraton	160	-97	63		
	(n+1) iteration	155	-105	50		
Implied Benefits between (n) and (n+1) iteration						
(n) vs (n+1)	DoMin	25	-21	4		
	DoSome	20	-29	-9		

Weaker Convergence

Benefits

Noise

mouchelⁱⁱ mvaconsultancy

Tighter Convergence

Benefits

Noise

mouchelⁱⁱ mvaconsultancy

FCF Option 4

Benefits

Noise

mouchelⁱⁱ mvaconsultancy

FCF Option 5

Benefits

Noise

mouchelⁱⁱ mvaconsultancy

Conclusions and Next Steps

Summary and Conclusions:

- Appraisal noise can lead to uncertainty in the measure of highway travel time benefits and unreliability in the comparison against other options and other schemes
- Noise is due to the instability in assignment convergence at nodes close to capacity and often remote from the scheme
- MVA developed tools to quantify and visualise the relative scale and spatial distribution of noise compared to benefits
- We then developed solutions to significantly reduce noise, including working with Atkins to develop the new FCF functionality in SATURN
- Measures of highway travel time benefits are now more reliable
- Next Steps:
 - Test Option 4 and 5 using real forecasts and a real scheme
 - Integrate approach into the Variable Demand Model

Name: Duncan Lockwood Telephone number: 0161 234 6955 Email: dlockwood@mvaconsultancy.com

Office address: MVA Consultancy Ltd 25th Floor City Tower Piccadilly Plaza Manchester M1 4BT

