Regional Transport Models

Alison Cox
Roger Himlin
Background and Objectives

- **Background**
 - Highways England tasked with delivering over 100 major schemes within RIS1 2015 – 2020.
 - Historically building individual scheme models is time consuming
 - Required approach to speed up the modelling and appraisal process
 - Regional modelling approach will give scheme appraisal a head start
 - Schemes will either be assessed entirely within RTMs or as donor model
 - Will enable national impact of RIS 1 to be understood
 - Will inform the development of RIS 2

- **Model Objectives**
 - To use a common software platform
 - To follow a common approach
 - To use common data sources
 - To maximise RTM model use for scheme appraisal
 - To use GIS front end for visual presentation
Regional Models and Route Strategy Locations

North
Mouchel, PBA, JMP, SDG

Trans Pennine
South
Atkins/AECOM/Systra

Midlands
Mott MacDonald, Grontmij, AECOM, Systra

South East
Hyder, CH2M, Atkins, AECOM

South West
Arup, Mott MacDonald
Key Challenges to Delivery

• Tight Timescale

• Size of Models
 • Software Requirements
 • Hardware Requirements
 • Run times
 • Number of Zones

• New Sources of Data
 • Mobile Phone
 • Data fusion

• CONSISTENCY
Key Objective - Technical Consistency

Model Platform
- Software Supplier
- TAME Lead

Data Consistency
- South West
- Highways England

Mobile Phone Data/Matrix Development
- South East
- Highways England

Variable Demand Modelling
- North
- Highways England

Calibration / Validation
- South East
- Highways England

Network Coding
- Midlands
- Highways England

Forecasting
- Trans Pennine South
- Highways England

Environment
- Highways England
Network Development

- Common buffer network from ITN layer

- Software capabilities and model run times drive level of network coding and zoning

- Detailed simulation coding focussed on SRN and RIS scheme areas with graduated zoning system applying away from SRN

- All junctions on SRN are coded in simulation allowing for blocking back/flow metering.

- The simulation network includes
 - all the motorways and A roads managed by Highways England;
 - Other “A” roads and “B” roads with material role in allowing traffic to access SRN;
 - any local roads or “C” roads that are necessarily included in order to capture local traffic routing realistically.

- Network outside the region of focus mainly modelled as simplified simulation network
 - Speed/flow curves
 - Dummy nodes with max turning saturation flow to avoid unrealistic junction delay
 - Urban areas coded as fixed speeds derived from Trafficmaster data
Network Detail
Network Development

- RTM common coding manual to ensure consistency
- SATCODER being used by some of model teams.
- Common network validation checks
Model Zoning

<table>
<thead>
<tr>
<th>Regional Traffic Model</th>
<th>Total Zones</th>
<th>Total Internal Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>South East</td>
<td>2,268</td>
<td>2,172</td>
</tr>
<tr>
<td>South West</td>
<td>1,901</td>
<td>1,627</td>
</tr>
<tr>
<td>Midlands</td>
<td>1,481</td>
<td>1,166</td>
</tr>
<tr>
<td>TPS</td>
<td>1,833</td>
<td>~1,833</td>
</tr>
<tr>
<td>North</td>
<td>1,253</td>
<td>1,161</td>
</tr>
</tbody>
</table>
Highway Model Trip Matrix Development

- Highways England mobile phone data contract awarded to Telefonica – Jacobs

- Mobile phone data to form the backbone of the trip matrices

- Matrices being developed with provisional data
 - Average 20 weekdays March
 - HBW, HBO, NHB
 - Road based
 - Granularity MSOA, start time

- Short distance trips being infilled using synthetic matrices
Issues with Mobile Data to date....

- Key strengths of data compared to conventional data sources
 - Wider geographical coverage
 - Higher sample size, capturing day-to-day variability of trips
 - Potential time and cost savings for data collection and processing

- Weaknesses/Uncertainties
 - definition of a trip
 - spatial resolution and data accuracy
 - short trip
 - mode, vehicle type and vehicle occupancy
 - trip purpose
 - expansion
 - stochastic rounding due to privacy
Mobile Phone Data Verification Checks

- Trip-ends & symmetry
- Trip rates
- Trip distribution pattern
- Trip length profile
- Trip Purpose allocation
- Daily profile of trips
- Level of vehicle flows

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Demand Indicator</th>
<th>Data Check / Comparison</th>
<th>Analysis Approach</th>
<th>Geographical Level</th>
<th>Criteria</th>
<th>Purpose of Test / Problems to Identify</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Removal of Rail Trips</td>
<td>All day HBW from-home origins and destinations vs. Census JTW ‘home’ and ‘work’ locations, separately for JTW data with and without rail trips</td>
<td>Regression analysis / scatter plots</td>
<td>MSOA / Model Zones / LA Districts</td>
<td>No criteria, comparison of R^2 values, look for outliers</td>
<td>Verify removal of rail trips</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Trip-ends</td>
<td>All day from-home trip origins and to-home trip destinations vs. Census population, separately for HBW and HBO trips.</td>
<td>Regression analysis / scatter plots</td>
<td>MSOA / Model Zones / LA Districts</td>
<td>$R^2 \geq 0.90$, slope close to unity and small intercept (at LA district level only)</td>
<td>Verify usability of the data, Spatial accuracy of trip allocation to MSOAs, Inform requirements for defining mobile data sectors as aggregations of MSOAs.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All day HBW from-home origins and to-home destinations vs. Census JTW ‘home’ locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All day HBW from-home destinations and to-home origins vs. Census JTW ‘work’ locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All day trip origins and destinations vs. customised NTEM trip-ends, separately for HBW, HBO, and NHB.</td>
<td>Regression analysis / scatter plots</td>
<td>Model Zones</td>
<td>$R^2 \geq 0.90$, slope close to unity and small intercept</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symmetry</td>
<td>From-home vs. to-home (all day, all purposes)</td>
<td>Regression analysis / scatter plots</td>
<td>MSOA</td>
<td>$R^2 \geq 0.95$, slope close to unity and small intercept</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From-home vs. to-home (all day, HBW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All origins vs. all destinations (all day, all purposes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undertake the test for matrix cells</td>
<td></td>
<td></td>
<td>No criteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creation of Prior Matrices

- Matrix Adjustments
 - Excluding bus and rail
 - Spatial resolution
 - Infilling short trips
 - Expansion
Model Calibration and Validation

- Emerging principles and levels of acceptability from TCG
 - Consistent screenlines between models at boundaries
 - Internal inter urban screenlines

- Validation will be aggregated into different areas of interest
 - Focus on the areas where RIS schemes are proposed and SRN
Variable Demand Model

- DIADEM
- Public Transport represented by cost changes
- DIADEM enhancements desirable:
 - initiated from a command line
 - able to undertake the same lognormal function that is being considered for the derivation of the synthetic matrices
 - providing greater flexibility in definition of vehicle occupancies (e.g. by time period and distance, or by matrix cell\sector)
 - providing greater flexibility in period to hour factors
 - providing the option to specify fixed costs for some time periods (particularly Off Peak so that DIADEM does not need to run an OP assignment)

- Creating a common process by which input and output files are managed, stored and processed – VBA?
- New VoT represented by continuous distance function
Run Times?

- Quick straw poll:

Who here has played a modern computer game or seen one being played?
Run Times?
Run Times?

- Reasonable resolution monitor
 - 1920 x 1080
- 60 frames per second minimum (demo maxed at 200fps)
- ~125-415 million calculations per second

- CPU: Maximum of 16 cores? Roughly
- Current cutting edge GPU?
Run Times?

- NVIDIA Titan X: 3,072 cores!
- 1.5 teraFLOPS – equivalent to the supercomputers of 1996!

- So why can’t we use this brute force already?
- GPU languages ≠ CPU languages
- But!
Run Times?

- NVIDIA CUDA
- ‘Wrapper’ for CPU languages.
- What have other industries seen?
 - Hydrographic modelling:
 - speed up factors of x 90 with a single GPU (7 days → 1.8 hours)
 - speed up factors of x 125 with two GPUs (7 days → 1.3 hours)
- CUDA Fortran released in 2009
- The chance for SATURN to run on a GPU!
Run Times?

- Not all areas of traffic modelling are ‘massively parallel’, but certainly large areas are!
- What else consists of massively parallel calculations?...VDM
- DIADEM